

Language Server Platform

The Phpactor Language Server Platform is a framework for creating language
servers implementing the Language Server Protocol [https://microsoft.github.io/language-server-protocol/specification].

Tutorial

	Getting Started

	Creating a Language Server

Reference

	Language Server Builder
	Run or Start

	Method Handlers
	Argument Resolvers

	Co-routines

	Cancellation

	Service Providers
	Example

	Usage

	Diagnostic Providers
	Example

	Integration

	Code Action Provider
	Example

	Commands
	Usage

Guide

	Testing
	Protocol Factory

	Unit Testing Handlers, Services etc.

	Integration Testing

	Language Server Tester

Getting Started

Below is an example which will run a language server which will
respond to any request with a response “Hello world!”:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	#!/usr/bin/env php
<?php

use Amp\Success;
use Phpactor\LanguageServer\Core\Middleware\RequestHandler;
use Phpactor\LanguageServer\Core\Rpc\Message;
use Phpactor\LanguageServer\Core\Rpc\RequestMessage;
use Phpactor\LanguageServer\Core\Rpc\ResponseMessage;
use Phpactor\LanguageServer\Middleware\ClosureMiddleware;
use Phpactor\LanguageServer\Core\Dispatcher\Dispatcher\MiddlewareDispatcher;
use Phpactor\LanguageServerProtocol\InitializeParams;
use Phpactor\LanguageServer\Core\Server\Transmitter\MessageTransmitter;
use Phpactor\LanguageServer\Core\Dispatcher\Factory\ClosureDispatcherFactory;
use Phpactor\LanguageServer\LanguageServerBuilder;

require __DIR__ . '/../../vendor/autoload.php';

$builder = LanguageServerBuilder::create(new ClosureDispatcherFactory(
 function (MessageTransmitter $transmitter, InitializeParams $params) {
 return new MiddlewareDispatcher(
 new ClosureMiddleware(function (Message $message, RequestHandler $handler) {
 if (!$message instanceof RequestMessage) {
 return $handler->handle($message);
 }

 return new Success(new ResponseMessage($message->id, 'Hello World!'));
 })
);
 }
));

$builder
 ->build()
 ->run();

	LanguageServerBuilder abstracts the creation of streams and
builds the Language Server. It accepts an
instance of DispatcherFactory - ClosureDispatcherFactory is a
DispatcherFactory. This
class has the responsibility initializing the session. It is invoked when
the Language Server client sends initialize method, providing its
capabilities.

	MessageTransmitter is how your session can communicate with the
client - you wouldn’t normally use this directly, but more on this later.
The InitializeParams is a class containing the initialization information
from the client, including the ClientCapabilities.

	MiddlewareDispatcher Is a Dispatcher which uses the
Middleware concept - this is the pipeline for incoming requests. Requests go
in, and ResponseMessage classes come out (or null if no response is
necessary).

	ClosureMiddleware is a Middleware which allows you to
specific a \Closure instead of implementing a new class (which is what
you’d normally do). The Message is the incoming message
(Request, Notification or Response) from the client, the
RequestHandler is used to delegate to the next Middleware.

	We return a ResponseMessage wrapped in a Promise. We only return a
Response for Request messages, and the Response must reference
the request’s ID.

	The Success class is a Promise which resolves immediately. Returning
a Promise allows us to run non-blocking
co-routines [https://amphp.org/amp/coroutines/].

	Then finally build and run the server. It will listen on STDIO by default.

If you run this example, you should be able to connect to the language server
and it should respond (incorrectly) to all requests with “Hello World!”.

Let’s try it out.

$ echo '{"id":1,"method":"foobar","params":[]}' | ./bin/proxy request | php example/server/minimal.php

The proxy binary file is used only for this demonstration, it adds the
necessary formatting to the message before passing it to our new language
server (running on STDIO by default).

It should show something like:

At this point you could connect an IDE to your new Language Server, but it
wouldn’t do very much.

In the next chapter we’ll try and introduce some more
concepts and add some language server functionality.

Creating a Language Server

In the previous tutorial we used the ClosureDispatcherFactory. This is
fine, but let’s now implement our own application - AcmeLS and give it a
dedicated dispatcher factory AcmeLsDispatcherFactory. This will be the
ingress for a new session:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	#!/usr/bin/env php
<?php

require __DIR__ . '/../../vendor/autoload.php';

use AcmeLs\AcmeLsDispatcherFactory;
use Phpactor\LanguageServer\LanguageServerBuilder;
use Psr\Log\NullLogger;

$logger = new NullLogger();
LanguageServerBuilder::create(new AcmeLsDispatcherFactory($logger))
 ->build()
 ->run();

The dispatcher is responsible for bootstrapping your language server session
and creating all the necessary classes that you will need. You might, for
example, instantiate a container here using some initialization options form
the client.

The Language Server invokes the factory method of this class with two
necessary dependencies: MessageTransmitter and the
InitializeParams.

Let’s just jump in at the deep end:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

	<?php

namespace AcmeLs;

use Phpactor\LanguageServer\Adapter\Psr\AggregateEventDispatcher;
use Phpactor\LanguageServer\Core\Dispatcher\ArgumentResolver\PassThroughArgumentResolver;
use Phpactor\LanguageServer\Core\Dispatcher\ArgumentResolver\LanguageSeverProtocolParamsResolver;
use Phpactor\LanguageServer\Core\Dispatcher\ArgumentResolver\ChainArgumentResolver;
use Phpactor\LanguageServer\Core\Workspace\Workspace;
use Phpactor\LanguageServer\Listener\WorkspaceListener;
use Phpactor\LanguageServer\Middleware\CancellationMiddleware;
use Phpactor\LanguageServer\Middleware\ErrorHandlingMiddleware;
use Phpactor\LanguageServer\Middleware\InitializeMiddleware;
use Phpactor\LanguageServerProtocol\InitializeParams;
use Phpactor\LanguageServer\Core\Dispatcher\Dispatcher;
use Phpactor\LanguageServer\Core\Handler\HandlerMethodRunner;
use Phpactor\LanguageServer\Core\Dispatcher\DispatcherFactory;
use Phpactor\LanguageServer\Handler\System\ExitHandler;
use Phpactor\LanguageServer\Handler\Workspace\CommandHandler;
use Phpactor\LanguageServer\Middleware\ResponseHandlingMiddleware;
use Phpactor\LanguageServer\Core\Command\CommandDispatcher;
use Phpactor\LanguageServer\Handler\System\ServiceHandler;
use Phpactor\LanguageServer\Core\Handler\Handlers;
use Phpactor\LanguageServer\Handler\TextDocument\TextDocumentHandler;
use Phpactor\LanguageServer\Core\Dispatcher\Dispatcher\MiddlewareDispatcher;
use Phpactor\LanguageServer\Listener\ServiceListener;
use Phpactor\LanguageServer\Core\Server\RpcClient\JsonRpcClient;
use Phpactor\LanguageServer\Core\Service\ServiceManager;
use Phpactor\LanguageServer\Core\Service\ServiceProviders;
use Phpactor\LanguageServer\Example\Service\PingProvider;
use Phpactor\LanguageServer\Core\Server\ClientApi;
use Phpactor\LanguageServer\Core\Server\ResponseWatcher\DeferredResponseWatcher;
use Phpactor\LanguageServer\Core\Server\Transmitter\MessageTransmitter;
use Phpactor\LanguageServer\Middleware\HandlerMiddleware;
use Phpactor\LanguageServer\Middleware\ShutdownMiddleware;
use Psr\Log\LoggerInterface;

class AcmeLsDispatcherFactory implements DispatcherFactory
{
 /**
 * @var LoggerInterface
 */
 private $logger;

 public function __construct(LoggerInterface $logger)
 {
 $this->logger = $logger;
 }

 public function create(MessageTransmitter $transmitter, InitializeParams $initializeParams): Dispatcher
 {
 $responseWatcher = new DeferredResponseWatcher();
 $clientApi = new ClientApi(new JsonRpcClient($transmitter, $responseWatcher));

 $serviceProviders = new ServiceProviders(
 new PingProvider($clientApi)
);

 $serviceManager = new ServiceManager($serviceProviders, $this->logger);
 $workspace = new Workspace();

 $eventDispatcher = new AggregateEventDispatcher(
 new ServiceListener($serviceManager),
 new WorkspaceListener($workspace)
);

 $handlers = new Handlers(
 new TextDocumentHandler($eventDispatcher),
 new ServiceHandler($serviceManager, $clientApi),
 new CommandHandler(new CommandDispatcher([])),
);

 $runner = new HandlerMethodRunner(
 $handlers,
 new ChainArgumentResolver(
 new LanguageSeverProtocolParamsResolver(),
 new PassThroughArgumentResolver()
),
);

 return new MiddlewareDispatcher(
 new ErrorHandlingMiddleware($this->logger),
 new InitializeMiddleware($handlers, $eventDispatcher, [
 'name' => 'acme',
 'version' => '1',
]),
 new ShutdownMiddleware($eventDispatcher),
 new ResponseHandlingMiddleware($responseWatcher),
 new CancellationMiddleware($runner),
 new HandlerMiddleware($runner)
);
 }
}

	MessageTransmitter: This class is provided by the Language Server and
allows you to send messages to the connected client. This is quite
low-level, instead you should use the ClientApi.

	InitializeParams: The initialization parameters provided by the client.

	ResponseWatcher: Class which tracks requests made by the server to the
client and can resolve responses, used as a dependency for…

	ClientApi: This class allows you to send (and receive) messages to the
client. It provides a convenient API
$clientApi->window()->showMessage()->error('Foobar'). In cases where the
API doesn’t provide what you need you can use the …

	RpcClient which allows you to send requests and notifications to
the client.

	ServiceProviders, PingProvider, ServiceManager: Ping provider is
an annoying service which pings your client for no reason at all, it is an
example background process. See Service Providers for
more information on services.

	Workspace: This class can keeps track of LSP text documents.

	EventDispatcher: Required by some middlewares to transmit events which
can be handled by Psr\EventDispatcher\ListenerProviderInterface classes.
We use:

	ServiceListener: responsible to start all the services when the server
is initialized.

	WorkspaceListener: will update the above mentioned Workspace based
on events emitted by the TextDocumentHandler.

	Handlers: Method handlers are responsible for handling incoming method
requests, this is the main extension point, see Method Handlers

	HandlerMethodRunner: This class is responsible for calling methods on
your class and converting the array of parameters from the request to match
the parameters on a handler’s method. Find out more in Method Handlers.

The RPC method handlers:

	TextDocumentHandler: Handles all text document notifications from the
client (i.e. text document synchronization). It emmits events.

	ServiceHandler: Non-protocol handler for starting/stopping monitoring
services.

	CommandHandler: Clients can execute commands (e.g. refactor something)
on the server, this class handlers that. See Commands.

	ExitHandler: Handles shutdown notifications from the client.

Finally we build the middleware dispatcher with the middlewares which will
handle the request:

	ErrorHandlingMiddleware: Will catch any errors thrown by succeeding
middlewares and log them. As a long running process we don’t want to exit
each time something goes wrong.

	InitializeMiddleware: This middleware responds to the initialize
request. It also allows your handlers to inject capabiltities into the
response, more in Method Handlers.

	ResponseHandlingMiddleware: Catch responses to requests made by the
server, and resolves them using our ResponseWatcher.

	CancellationMiddleware: Often the client knows that a request is no
longer required, and it request that that request be cancelled (imagine a
long-running search). This middleware intercepts the $/cancelRequest
notifications and tells the runner to cancel them.

	HandlerMiddleware: The final destination - will forward the request to
the handler runner which will dispatch our handlers

In your application you might choose to connect all of this magic in a
dependency injection container.

Language Server Builder

The language server builder takes care of:

	Creating the necessary streams.

	Creating the tester.

It is optional, you can also have a look inside and instantiate the server
yourself.

It accepts:

	Phpactor\LanguageServer\Core\Dispatcher\DispatcherFactory.

	An optional PSR Psr\Log\LoggerInterface.

<?php

use Phpactor\LanguageServer\LanguageServerBuilder;

$server = Phpactor\LanguageServer\LanguageServerBuilder::create(
 new MyDispatcher(),
 new NullLogger()
)->build();

$server->run();
// or
$promise = $server->start();

Run or Start

The run method on the built language server will start the server and listen for connections. It will also register an error and signal handler.

The start method will simply return a promise, without doing anything extra.

Method Handlers

Method handlers handle the RPC calls from the client.

They look like this:

<?php

use Phpactor\LanguageServer\Core\Handler\Handler;
use Amp\Promise;

class MyHandler implements Handler
{
 public function methods(): array
 {
 return [
 'method/name' => 'doSomething',
];
 }

 public function doSomething($args, CancellationToken $canellation): Promise
 {
 return new Success('hello!');
 }
}

Once registered this command will respond to an RPC request to method/name
with hello!.

Argument Resolvers

The first arguments passed to the parameter will depend on the argument resolvers
used by the HandlerRunner, the last argument is always a cancellation
token more on this later.

<?php

$runner = new HandlerMethodRunner(
 new Handlers(new MyHandler()),
 new ChainArgumentResolver(
 new LanguageSeverProtocolParamsResolver(),
 new PassThroughArgumentResolver()
),
);

Here we use the ChainArgumentResolver to try two different stragies.

LanguageServerProtocolParamsResolver

This strategy will see if your method implements an LSP *Params class and
automatically instantaite it for you:

<?php

class MyHandler implements Handler
{
 public function methods(): array
 {
 return [
 'textDocument/completion' => 'complete',
];
 }

 public function doSomething(CompletionParams $completionParams, CancellationToken $canellation): Promise
 {
 $uriToTextDocument = $completionParams->textDocument->uri;
 // ...
 }
}

You should be able to do this with any method documented in the language
server specification.

DTLArgumentResolver

This argument resolver will try and match the parameters from the request to
the parameters of your method.

PassThroughArgumentResolver

This is a fallback resolver which will simply pass the raw array of arguments.

Co-routines

Your method MUST return an Amp\Promise. If you return immediately you can
use the new Success($value) promise, if you do any interruptable* work
which takes a significant amount of time you should use a co-routing. For
example:

<?php

class MyHandler implements Handler
{
 //...

 public function doSomething(CompletionParams $params, CancellationToken $canellation): Promise
 {
 return \Amp\call(function () {
 // ...
 $completionItems = [];

 foreach($this->magicCompletionProvider->provideCompletions($params) as $completion) {
 $completionItems[] = $completion;
 yield Amp\delay(1);
 }

 return $completionItems;
 });

 }
}

The above will process a single completion item but then yield control back to
the server for 1 millisecond before continuing. This allows the server to do
other things (like for example cancel this request).

Cancellation

The CancellationToken passed to the method handler can throw an exception
if the request is cancelled as follows:

<?php

class MyHandler implements Handler
{
 //...

 public function doSomething(CompletionParams $params, CancellationToken $canellation): Promise
 {
 return \Amp\call(function () {
 // ...
 $completionItems = [];

 foreach($this->magicCompletionProvider->provideCompletions($params) as $completion) {
 $completionItems[] = $completion;
 yield Amp\delay(1);
 try {
 $cancellation->throwIfRequested();
 } catch (Amp\CancelledException $cancelled) {
 break;
 }
 }

 return $completionItems;
 });
 }
}

In the above example, when the server cancels this request, the exception will
be thrown and we will return early.

Service Providers

Service providers are background services which can should be started on
on the initialized notification from the client.

A good example of a service is a code indexing service which watches the file
system and indexes code when files change.

Example

A full example of a service provider:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	<?php

namespace Phpactor\LanguageServer\Example\Service;

use Amp\CancellationToken;
use Amp\CancelledException;
use Amp\Delayed;
use Amp\Promise;
use Phpactor\LanguageServer\Core\Server\ClientApi;
use Phpactor\LanguageServer\Core\Service\ServiceProvider;

/**
 * Example service which shows a "ping" message every second.
 */
class PingProvider implements ServiceProvider
{
 /**
 * @var ClientApi
 */
 private $client;

 public function __construct(ClientApi $client)
 {
 $this->client = $client;
 }

 /**
 * {@inheritDoc}
 */
 public function services(): array
 {
 return [
 'ping'
];
 }

 /**
 * @return Promise<null>
 */
 public function ping(CancellationToken $cancel): Promise
 {
 return \Amp\call(function () use ($cancel) {
 while (true) {
 try {
 $cancel->throwIfRequested();
 } catch (CancelledException $cancelled) {
 break;
 }
 yield new Delayed(1000);
 $this->client->window()->showMessage()->info('ping');
 }
 });
 }
}

This is similar to method handlers with the exception that:

	The services method provides only an array of method names. The name
doubles as both the method and service name.

	The method is called when the Language Server is initialized (or when it is
started via. the service manager).

	Services are passed only a CancellationToken.

Usage

<?php

$serviceProviders = new ServiceProviders(
 new PingProvider($clientApi)
);

$serviceManager = new ServiceManager($serviceProviders, $logger);
$eventDispatcher = new EventDispatcher(
 new ServiceListener($serviceManager)
);

$handlers = new Handlers(
 // ...
 new ServiceHandler($serviceManager, $clientApi),
 // ...
);

return new MiddlewareDispatcher(
 // ...
 new InitializeMiddleware($handlers, $eventDispatcher)
 // ...
);

In the above code the ServiceManager is responsible for starting and
stopping services, the ServiceHandler handles RPC methods to start/stop
services, and we use the ServiceListener to start the services when the
server is initialized (based on the Initialized event issued by the
InitializeMiddleware.

Diagnostic Providers

Diagnostic providers are invoked when text documents are updated and are
responsible to send diagnostics (e.g. actual or potential problems with the
code) to the client.

Example

Example of a diagnostic provider:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	<?php

namespace Phpactor\LanguageServer\Example\Diagnostics;

use Amp\CancellationToken;
use Amp\Promise;
use Phpactor\LanguageServerProtocol\Diagnostic;
use Phpactor\LanguageServerProtocol\DiagnosticSeverity;
use Phpactor\LanguageServerProtocol\Position;
use Phpactor\LanguageServerProtocol\Range;
use Phpactor\LanguageServerProtocol\TextDocumentItem;
use Phpactor\LanguageServer\Core\Diagnostics\DiagnosticsProvider;
use function Amp\call;

class SayHelloDiagnosticsProvider implements DiagnosticsProvider
{
 /**
 * {@inheritDoc}
 */
 public function provideDiagnostics(TextDocumentItem $textDocument, CancellationToken $cancel): Promise
 {
 /** @phpstan-ignore-next-line */
 return call(function () {
 return [
 new Diagnostic(
 new Range(
 new Position(0, 0),
 new Position(1, 0)
),
 'This is the first line, hello!',
 DiagnosticSeverity::INFORMATION
)
];
 });
 }

 public function name(): string
 {
 return 'say-hello';
 }
}

$diagnosticsService = new DiagnosticsService(
 new DiagnosticsEngine($clientApi, new AggregateDiagnosticsProvider(
 $logger,
 new SayHelloDiagnosticsProvider()
))
);

Integration

Diagnostics are facilitated through the “Diagnostics Service” which in turn
requires the DiagnosticsEngine which accepts a DiagnosticProvider -
below we use the AggregateDiagnosticsProvider which allows you to provide
many diagnostic providers:

<?php

$diagnosticsService = new DiagnosticsService(
 new DiagnosticsEngine($clientApi, new AggregateDiagnosticsProvider(
 $logger,
 new SayHelloDiagnosticsProvider()
))
);

Code Action Provider

Code action providers can be implemented to enable you to suggest
commands which can be executed on a given text document and
range.

Example

Example of a command:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	<?php

namespace Phpactor\LanguageServer\Example\CodeAction;

use Amp\CancellationToken;
use Amp\Promise;
use Phpactor\LanguageServerProtocol\CodeAction;
use Phpactor\LanguageServerProtocol\CodeActionKind;
use Phpactor\LanguageServerProtocol\Command;
use Phpactor\LanguageServerProtocol\Range;
use Phpactor\LanguageServerProtocol\TextDocumentItem;
use Phpactor\LanguageServer\Core\CodeAction\CodeActionProvider;
use function Amp\call;

class SayHelloCodeActionProvider implements CodeActionProvider
{
 public function provideActionsFor(TextDocumentItem $textDocument, Range $range, CancellationToken $cancel): Promise
 {
 /** @phpstan-ignore-next-line */
 return call(function (): array {
 return [
 CodeAction::fromArray([
 'title' => 'Alice',
 'command' => new Command('Hello Alice', 'phpactor.say_hello', [
 'Alice',
])
]),
 CodeAction::fromArray([
 'title' => 'Bob',
 'command' => new Command('Hello Bob', 'phpactor.say_hello', [
 'Bob',
])
])
];
 });
 }

 /**
 * {@inheritDoc}
 */
 public function kinds(): array
 {
 return [CodeActionKind::QUICK_FIX];
 }

 public function describe(): string
 {
 return 'says hello!';
 }
}

It unconditionally provides two code actions: Alice and Bob. It
references a previously registered commands such as:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

	<?php

namespace Phpactor\LanguageServer\Example\Command;

use Phpactor\LanguageServer\Core\Command\Command;
use Phpactor\LanguageServer\Core\Server\ClientApi;

class SayHelloCommand implements Command
{
 /**
 * @var ClientApi
 */
 private $api;

 public function __construct(ClientApi $api)
 {
 $this->api = $api;
 }

 public function __invoke(string $name): void
 {
 $this->api->window()->showMessage()->info(sprintf('Hello %s!', $name));
 }
}

Commands

Commands are issued from the client to the server, they are similar in concept
to RPC calls with the exception that they are expcitly registered with the
server and executed via. an RPC method.

Usage

The command handler accepts a CommandDispatcher which in turn accepts a
map of command names to invokable objects:

<?php

use Phpactor\LanguageServer\Handler\Workspace\CommandHandler;
use Phpactor\LanguageServer\Workspace\CommandDispatcher;

// ...
$handler = new CommandHandler(
 new CommandDispatcher([
 'my_command' => function (array $args) {
 // do something
 }
])
));

Now, when the client connects, the server will signify (via.
ServerCapabilties) that this command is available.

Testing

This package includes some tools to make testing easier.

Protocol Factory

The ProtocolFactory is a utility class for creating LSP protocol objects:

<?php

use Phpactor\LanguageServer\Test\ProtocolFactory;

$item = ProtocolFactory::textDocumentItem('uri', 'content');
$initializeParams = ProtocolFactory::initializeParams('/path/to/rootUri');

This is useful as the LSP objects can be complicated and we can assume some
defaults using the factory.

Unit Testing Handlers, Services etc.

You can use the Language Server Tester to test your handlers, services,
commands etc as follows:

<?php

$tester = LanguageServerTesterBuilder::create()
 ->addHanlder($myHandler)
 ->addServiceProvider($myServiceProvider)
 ->addCommand($myCommand)
 ->build();

$result = $tester->requestAndWait('soMyThing', []);

Lean more about the LanguageServerTester

Integration Testing

If you are using the LanguageServerBuilder to manage the instantiation of
your LanguageServer then, assuming you are using some kind of dependency
injection container, you can use the tester method to get the
Language Server Tester.

<?php

$builder = $container->get(LanguageServerBuilder::class);
assert($builder instanceof LanguageServerBuilder);
$tester = $builder->tester();
$response = $tester->requestAndWait('foobar', ['bar' => 'foo']);
$response = $tester->notifyAndWait('foobar', ['bar' => 'foo']);

This will provide the Language Server Tester with the “real” dispatcher.

Language Server Tester

The tester provides access to a test transmitter from which you can access any
message sent by the server:

<?php

// ...
$messageOrNull = $tester->transmitter()->shift();

You can also use some convenience methods to control the server:

<?php

// ...
$messageOrNull = $tester->textDocument()->open('/uri/to/text.php', 'content');
$tester->services()->start('myservice');

The tester will automatically initialize the server, but you can also pass
your own initialization parameters:

<?php

// ...
$tester = $builder->tester(ProtocolFactory::initializeParams('/uri/foobar.php'));

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Language Server Platform

 		
 Getting Started

 		
 Creating a Language Server

 		
 Language Server Builder

 		
 Run or Start

 		
 Method Handlers

 		
 Argument Resolvers

 		
 LanguageServerProtocolParamsResolver

 		
 DTLArgumentResolver

 		
 PassThroughArgumentResolver

 		
 Co-routines

 		
 Cancellation

 		
 Service Providers

 		
 Example

 		
 Usage

 		
 Diagnostic Providers

 		
 Example

 		
 Integration

 		
 Code Action Provider

 		
 Example

 		
 Commands

 		
 Usage

 		
 Testing

 		
 Protocol Factory

 		
 Unit Testing Handlers, Services etc.

 		
 Integration Testing

 		
 Language Server Tester

_static/comment-bright.png

_static/ajax-loader.gif

